If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x + y3) * dx + (3y5 + -3x2y) * dy = 0 Reorder the terms for easier multiplication: dx(x + y3) + (3y5 + -3x2y) * dy = 0 (x * dx + y3 * dx) + (3y5 + -3x2y) * dy = 0 Reorder the terms: (dxy3 + dx2) + (3y5 + -3x2y) * dy = 0 (dxy3 + dx2) + (3y5 + -3x2y) * dy = 0 Reorder the terms: dxy3 + dx2 + (-3x2y + 3y5) * dy = 0 Reorder the terms for easier multiplication: dxy3 + dx2 + dy(-3x2y + 3y5) = 0 dxy3 + dx2 + (-3x2y * dy + 3y5 * dy) = 0 dxy3 + dx2 + (-3dx2y2 + 3dy6) = 0 Solving dxy3 + dx2 + -3dx2y2 + 3dy6 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), 'd'. d(xy3 + x2 + -3x2y2 + 3y6) = 0Subproblem 1
Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0Subproblem 2
Set the factor '(xy3 + x2 + -3x2y2 + 3y6)' equal to zero and attempt to solve: Simplifying xy3 + x2 + -3x2y2 + 3y6 = 0 Solving xy3 + x2 + -3x2y2 + 3y6 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1xy3' to each side of the equation. xy3 + x2 + -3x2y2 + -1xy3 + 3y6 = 0 + -1xy3 Reorder the terms: xy3 + -1xy3 + x2 + -3x2y2 + 3y6 = 0 + -1xy3 Combine like terms: xy3 + -1xy3 = 0 0 + x2 + -3x2y2 + 3y6 = 0 + -1xy3 x2 + -3x2y2 + 3y6 = 0 + -1xy3 Remove the zero: x2 + -3x2y2 + 3y6 = -1xy3 Add '-1x2' to each side of the equation. x2 + -3x2y2 + -1x2 + 3y6 = -1xy3 + -1x2 Reorder the terms: x2 + -1x2 + -3x2y2 + 3y6 = -1xy3 + -1x2 Combine like terms: x2 + -1x2 = 0 0 + -3x2y2 + 3y6 = -1xy3 + -1x2 -3x2y2 + 3y6 = -1xy3 + -1x2 Add '3x2y2' to each side of the equation. -3x2y2 + 3x2y2 + 3y6 = -1xy3 + -1x2 + 3x2y2 Combine like terms: -3x2y2 + 3x2y2 = 0 0 + 3y6 = -1xy3 + -1x2 + 3x2y2 3y6 = -1xy3 + -1x2 + 3x2y2 Add '-3y6' to each side of the equation. 3y6 + -3y6 = -1xy3 + -1x2 + 3x2y2 + -3y6 Combine like terms: 3y6 + -3y6 = 0 0 = -1xy3 + -1x2 + 3x2y2 + -3y6 Simplifying 0 = -1xy3 + -1x2 + 3x2y2 + -3y6 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
d = {0}
| 6x-1=xsquared | | -13n+18=-12n-13 | | (cosx)(cotx)=sinx | | 6(-3.75)+14=-2(8+(-3.75)) | | f(x)=100(0.9) | | 1-m/3=12 | | 2(3y+2)+y=3y+4 | | -3a(a+b-5)+4(-2a+2b)+b(a+3b-7)=0 | | 6(3.75)+14=-2(8+(3.75)) | | -158+11x=112+x | | b-0.4=b+3.1 | | 1-(2)+x=1 | | 4-3x=40 | | (5x^2+2x+5)+(3x^2+7x-4)= | | 1(568)-b+2(b-9)=100 | | 2x+4=-64 | | 7x-5=8x+5 | | 15x^4+3x^3-12x^2= | | 12x^2-14x+14=0 | | 5x-7x+1=0 | | 3m-17=16 | | (7x-3y+2)dx+(5y-3x+5)dy=0 | | 4w-16=-20 | | 5ln(x+4)-6lnx= | | -3x=5-(-4) | | 39+1n=40 | | a=(k^3+3k^2-k)(k^3+3k^2+k) | | 7x^2+49x-245=0 | | 9+x=41 | | 6=9x-x | | -2b^2-8b-14=-6 | | log(2+3)-log(2-5)= |